The generator matrix 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 X 1 0 X 1 X X X X^2 X X 0 X^2 X^2 0 X X^2 0 X^2 X X 0 1 1 X X X^2 0 1 1 0 X 0 X 0 0 X X X^2 X^2 X^2+X X^2+X X^2 X^2 X^2+X X^2+X 0 X^2 X 0 X^2 X 0 X^2+X 0 X X^2+X X^2+X X X^2+X X^2 X^2 0 X X X X X^2 0 X X X X X^2 X^2 X^2 X^2+X X^2+X X X 0 0 0 0 X X X^2 X^2+X X^2+X X^2 X^2 X X^2+X 0 0 X^2+X X X^2 0 X X X^2 X^2+X X^2+X X^2+X X^2+X X X X 0 X^2+X X^2 X X X 0 X^2 X X^2+X X^2+X X X^2 0 X^2 0 X X^2 0 X^2+X X X^2+X X X^2+X X generates a code of length 52 over Z2[X]/(X^3) who´s minimum homogenous weight is 52. Homogenous weight enumerator: w(x)=1x^0+120x^52+4x^56+3x^64 The gray image is a linear code over GF(2) with n=208, k=7 and d=104. As d=104 is an upper bound for linear (208,7,2)-codes, this code is optimal over Z2[X]/(X^3) for dimension 7. This code was found by Heurico 1.16 in 0.684 seconds.